Yoneda Structures from 2-toposes
نویسنده
چکیده
A 2-categorical generalisation of the notion of elementary topos is provided, and some of the properties of the yoneda structure [SW78] it generates are explored. Results enabling one to exhibit objects as cocomplete in the sense definable within a yoneda structure are presented. Examples relevant to the globular approach to higher dimensional category theory are discussed. This paper also contains some expository material on the theory of fibrations internal to a finitely complete 2-category [Str74b] and provides a self-contained development of the necessary background material on yoneda structures.
منابع مشابه
Strict 2-toposes
A 2-categorical generalisation of the notion of elementary topos is provided, and some of the properties of the yoneda structure [SW78] it generates are explored. Examples relevant to the globular approach to higher dimensional category theory are discussed. This paper also contains some expository material on the theory of fibrations internal to a finitely complete 2category [Str74b] and provi...
متن کاملYoneda Representations of Flat Functors and Classifying Toposes
We obtain semantic characterizations, holding for any Grothendieck site (C, J), for the models of a theory classified by a topos of the form Sh(C, J) in terms of the models of a theory classified by a topos [C,Set]. These characterizations arise from an appropriate representation of flat functors into Grothendieck toposes based on an application of the Yoneda Lemma in conjunction with ideas fro...
متن کاملTotally distributive toposes
A locally small category E is totally distributive (as defined by Rosebrugh-Wood) if there exists a string of adjoint functors t ⊣ c ⊣ y, where y : E → Ê is the Yoneda embedding. Saying that E is lex totally distributive if, moreover, the left adjoint t preserves finite limits, we show that the lex totally distributive categories with a small set of generators are exactly the injective Grothend...
متن کاملArithmetic universes and classifying toposes
The paper uses structures in Con, the author’s 2-category of sketches for arithmetic universes (AUs), to provide constructive, base-independent results for Grothendieck toposes (bounded S-toposes) as generalized spaces. The main result is to show how an extension map U : T1 → T0 can be viewed as a bundle, transforming base points (models of T0 in any elementary topos S with nno) to fibres (gene...
متن کاملLeft Determined Model Structures for Locally Presentable Categories
We extend a result of Cisinski on the construction of cofibrantly generated model structures from (Grothendieck) toposes to locally presentable categories and from monomorphism to more general cofibrations. As in the original case, under additional conditions, the resulting model structures are ”left determined” in the sense of Rosický and Tholen.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 15 شماره
صفحات -
تاریخ انتشار 2007